Chapter

Atomic and lonic Arrangements

Have You Ever Wondered?

e Whatis amorphous silicon and how is it different from the silicon used to
make computer chips?

e What are liquid crystals?

e If you were to pack a cubical box with uniform-sized spheres, what is the
maximum packing possible?

e How can we calculate the density of different materials?

rrangements of atoms and ions play an important role in determining the
microstructure and properties of a material. The main objectives of this
chapter are to

(a) learn to classify materials based on atomic/ionic arrangements; and
(b) describe the arrangements in crystalline solids according to the concepts of
the lattice, basis, and crystal structure.

For crystalline solids, we will illustrate the concepts of Bravais lattices, unit
cells, and crystallographic directions and planes by examining the arrangements of
atoms or ions in many technologically important materials. These include metals
(e.g., Cu, Al, Fe, W, Mg, etc.), semiconductors (e.g., Si, Ge, GaAs, etc.), advanced
ceramics (e.g., ZrO,, Al,O3, BaTiO3, etc.), ceramic superconductors, diamond, and
other materials. We will develop the necessary nomenclature used to characterize
atomic or ionic arrangements in crystalline materials. We will examine the use of
x-ray diffraction (XRD), transmission electron microscopy (TEM), and electron
diffraction. These techniques allow us to probe the arrangements of atoms/ions
in different materials. \We will present an overview of different types of amorphous
materials such as amorphous silicon, metallic glasses, polymers, and inorganic
glasses.
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Chapter 2 highlighted how interatomic bonding influences certain properties
of materials. This chapter will underscore the influence of atomic and ionic arrange-
ments on the properties of engineered materials. In particular, we will concentrate
on "perfect” arrangements of atoms or ions in crystalline solids.

The concepts discussed in this chapter will prepare us for understanding how
deviations from these perfect arrangements in crystalline materials create what are
described as atomic level defects. The term defect in this context refers to a lack of
perfection in atomic or ionic order of crystals and not to any flaw or quality of an
engineered material. In Chapter 4, we will describe how these atomic level defects
actually enable the development of formable, strong steels used in cars and build-
ings, aluminum alloys for aircraft, solar cells and photovoltaic modules for satellites,
and many other technologies.

B
3-1 Short-Range Order versus Long-Range Order

In different states of matter, we can find four types of atomic or ionic arrangements
(Figure 3-1).

No Order In monoatomic gases, such as argon (Ar) or plasma created in a
fluorescent tubelight, atoms or ions have no orderly arrangement.
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Figure 3-1  Levels of atomic arrangements in materials: (a) Inert monoatomic gases have
no regular ordering of atoms. (b,c) Some materials, including water vapor, nitrogen gas,
amorphous silicon, and silicate glass, have short-range order. (d) Metals, alloys, many
ceramics and some polymers have regular ordering of atoms/ions that extends through the
material.
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Short-Range Order [SRO] A material displays short-range order
(SRO) if the special arrangement of the atoms extends only to the atom’s nearest neigh-
bors. Each water molecule in steam has short-range order due to the covalent bonds
between the hydrogen and oxygen atoms; that is, each oxygen atom is joined to two
hydrogen atoms, forming an angle of 104.5° between the bonds. There is no long-range
order, however, because the water molecules in steam have no special arrangement with
respect to each other’s position.

A similar situation exists in materials known as inorganic glasses. In Chapter 2,
we described the tetrahedral structure in silica that satisfies the requirement that four
oxygen ions be bonded to each silicon ion [Figure 3-2(a)]. As will be discussed later, in a
glass, individual tetrahedral units are joined together in a random manner. These
tetrahedra may share corners, edges, or faces. Thus, beyond the basic unit of a (SiO4)*~
tetrahedron, there is no periodicity in their arrangement. In contrast, in quartz or other
forms of crystalline silica, the (SiO4)*~ tetrahedra are indeed connected in different
periodic arrangements.

Many polymers also display short-range atomic arrangements that closely resem-
ble the silicate glass structure. Polyethylene is composed of chains of carbon atoms, with
two hydrogen atoms attached to each carbon. Because carbon has a valence of four and
the carbon and hydrogen atoms are bonded covalently, a tetrahedral structure is again
produced [Figure 3-2(b)]. Tetrahedral units can be joined in a random manner to produce
polymer chains.

Long-Range Order (LRO) Most metals and alloys, semiconductors,
ceramics, and some polymers have a crystalline structure in which the atoms or ions dis-
play long-range order (LRO); the special atomic arrangement extends over much larger
length scales ~ >100 nm. The atoms or ions in these materials form a regular repeti-
tive, grid-like pattern, in three dimensions. We refer to these materials as crystalline
materials. If a crystalline material consists of only one large crystal, we refer to it as a
single crystal. Single crystals are useful in many electronic and optical applications.
For example, computer chips are made from silicon in the form of large (up to 12 inch
diameter) single crystals [Figure 3-3(a)]. Similarly, many useful optoelectronic
devices are made from crystals of lithium niobate (LiNbOj3). Single crystals can also
be made as thin films and used for many electronic and other applications. Certain
types of turbine blades may also be made from single crystals of nickel-based superal-
loys. A polycrystalline material is composed of many small crystals with varying
orientations in space. These smaller crystals are known as grains. The borders between
crystals, where the crystals are in misalignment, are known as grain boundaries.
Figure 3-3(b) shows the microstructure of a polycrystalline stainless steel material.

Figure 3-2

(a) Basic Si-O tetrahedron in silicate glass.
~H (b) Tetrahedral arrangement of C-H bonds

in polyethylene.

~C
(b)
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Figure 3-3  (a) Photograph of a silicon single crystal. (b) Micrograph of a polycrystalline
stainless steel showing grains and grain boundaries (Courtesy of Dr. A. J. Deardo, Dr. M. Hua
and Dr. J. Garcia.)

Many crystalline materials we deal with in engineering applications are polycrystalline
(e.g., steels used in construction, aluminum alloys for aircrafts, etc.). We will learn in
later chapters that many properties of polycrystalline materials depend upon the phys-
ical and chemical characteristics of both grains and grain boundaries. The properties
of single crystal materials depend upon the chemical composition and specific direc-
tions within the crystal (known as the crystallographic directions). Long-range order
in crystalline materials can be detected and measured using techniques such as x-ray
diffraction or electron diffraction (see Section 3-9).

Liquid crystals (LCs) are polymeric materials that have a special type of order.
Liquid crystal polymers behave as amorphous materials (liquid-like) in one state. When
an external stimulus (such as an electric field or a temperature change) is provided, some
polymer molecules undergo alignment and form small regions that are crystalline, hence
the name “liquid crystals.” These materials have many commercial applications in liquid
crystal display (LCD) technology.

Figure 3-4 shows a summary of classification of materials based on the type of
atomic order.

I
3-2 Amorphous Materials

Any material that exhibits only a short-range order of atoms or ions is an amorphous
material; that is, a noncrystalline one. In general, most materials want to form peri-
odic arrangements since this configuration maximizes the thermodynamic stability of
the material. Amorphous materials tend to form when, for one reason or other, the
kinetics of the process by which the material was made did not allow for the formation
of periodic arrangements. Glasses, which typically form in ceramic and polymer sys-
tems, are good examples of amorphous materials. Similarly, certain types of polymeric
or colloidal gels, or gel-like materials, are also considered amorphous. Amorphous
materials often offer a unique blend of properties since the atoms or ions are not assem-
bled into their “regular” and periodic arrangements. Note that often many engineered
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A: Monoatomic Gases

D: Crystalline Materials
No Order

Short-and Long-
Example: Argon Gas Range Order
B: Amorphous Materials
No Long-Range Order
Only Short-Range Order Polycrystalline
Examples: Amorphous Si, Single Crystal Examples: Metals,
Glasses, Plastics Examples: Si, GaAs Alloys, and
Most Ceramics

C: Liquid Crystals
Short-Range Order
and Long-Range Order
in Small Volumes
Example: LCD polymers

Figure 3-4  Classification of materials based on the type of atomic order.

materials labeled as “amorphous” may contain a fraction that is crystalline. Techniques
such as electron diffraction and x-ray diffraction (see Section 3-9) cannot be used
to characterize the short-range order in amorphous materials. Scientists use neutron
scattering and other methods to investigate the short-range order in amorphous
materials.

Crystallization of glasses can be controlled. Materials scientists and engineers,
such as Donald Stookey, have developed ways of deliberately nucleating ultrafine crystals
in amorphous glasses. The resultant materials, known as glass-ceramics, can be made up
to ~99.9% crystalline and are quite strong. Some glass-ceramics can be made optically
transparent by keeping the size of the crystals extremely small (~ <100 nm). The major
advantage of glass-ceramics is that they are shaped using glass-forming techniques, yet
they are ultimately transformed into crystalline materials that do not shatter like glass.
We will consider this topic in greater detail in Chapter 9.

Similar to inorganic glasses, many plastics are amorphous. They do contain small por-
tions of material that are crystalline. During processing, relatively large chains of polymer mol-
ecules get entangled with each other, like spaghetti. Entangled polymer molecules do not
organize themselves into crystalline materials. During processing of polymeric beverage bottles,
mechanical stress is applied to the preform of the bottle (e.g., the manufacturing of a standard
2-liter soft drink bottle using polyethylene terephthalate (PET plastic)). This process is known as
blow-stretch forming. The radial (blowing) and longitudinal (stretching) stresses during bottle
formation actually untangle some of the polymer chains, causing stress-induced crystallization.
The formation of crystals adds to the strength of the PET bottles.

Compared to plastics and inorganic glasses, metals and alloys tend to form crys-
talline materials rather easily. As a result, special efforts must be made to quench the met-
als and alloys quickly in order to prevent crystallization; for some alloys, a cooling rate of
>100°C/s is required to form metallic glasses. This technique of cooling metals and alloys
very fast is known as rapid solidification. Many metallic glasses have both useful and
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unusual properties. The mechanical properties of metallic glasses will be discussed
in Chapter 6.

To summarize, amorphous materials can be made by restricting the atoms/ions from
assuming their “regular” periodic positions. This means that amorphous materials do not
have a long-range order. This allows us to form materials with many different and unusual
properties. Many materials labeled as “amorphous” can contain some level of crystallinity.
Since atoms are assembled into nonequilibrium positions, the natural tendency of an amor-
phous material is to crystallize (i.e., since this leads to a thermodynamically more stable mate-
rial). This can be done by providing a proper thermal (e.g., a silicate glass), thermal and
mechanical (e.g., PET polymer), or electrical (e.g., liquid crystal polymer) driving force.

D
3-3 Lattice, Basis, Unit Cells, and Crystal
Structures

A typical solid contains on the order of 1023 atoms/cm?. In order to communicate the
spatial arrangements of atoms in a crystal, it is clearly not necessary or practical to
specify the position of each atom. We will discuss two complementary methodologies
for simply describing the three-dimensional arrangements of atoms in a crystal. We will
refer to these as the lattice and basis concept and the unit cell concept. These concepts
rely on the principles of crystallography. In Chapter 2, we discussed the structure of the
atom. An atom consists of a nucleus of protons and neutrons surrounded by electrons,
but for the purpose of describing the arrangements of atoms in a solid, we will envision
the atoms as hard spheres, much like ping-pong balls. We will begin with the lattice and
basis concept.

A lattice is a collection of points, called lattice points, which are arranged in
a periodic pattern so that the surroundings of each point in the lattice are identical. A
lattice is a purely mathematical construct and is infinite in extent. A lattice may be one-,
two-, or three-dimensional. In one dimension, there is only one possible lattice: It is a line
of points with the points separated from each other by an equal distance, as shown in
Figure 3-5(a). A group of one or more atoms located in a particular way with respect to
each other and associated with each lattice point is known as the basis or motif. The basis
must contain at least one atom, but it may contain many atoms of one or more types. A
basis of one atom is shown in Figure 3-5(b). We obtain a crystal structure by placing the
atoms of the basis on every lattice point (i.e., crystal structure = lattice + basis), as shown
in Figure 3-5(c). A hypothetical one-dimensional crystal that has a basis of two different
atoms is shown in Figure 3-5(d). The larger atom is located on every lattice point with the
smaller atom located a fixed distance above each lattice point. Note that it is not neces-
sary that one of the basis atoms be located on each lattice point, as shown in Figure 3-5(¢).
Figures 3-5(d) and (e) represent the same one-dimensional crystal; the atoms are simply
shifted relative to one another. Such a shift does not change the atomic arrangements in
the crystal.

There is only one way to arrange points in one dimension such that each point
has identical surroundings—an array of points separated by an equal distance as dis-
cussed above. There are five distinct ways to arrange points in two dimensions such that
each point has identical surroundings; thus, there are five two-dimensional lattices.
There are only fourteen unique ways to arrange points in three dimensions. These unique
three-dimensional arrangements of lattice points are known as the Bravais lattices,
named after Auguste Bravais (1811-1863) who was an early French crystallographer.
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Figure 3-5
Lattice and basis. (a) A one-dimensional lattice.
The lattice points are separated by an equal
distance. (b) A basis of one atom. (c) A crystal

' structure formed by placing the basis of (b) on every
b g lattice point in (a). (d) A crystal structure formed
by placing a basis of two atoms of different types
on the lattice in (a). (e) The same crystal as shown
in (d); however, the basis has been shifted relative to
each lattice point.

.‘*

(a) (b) (c) (d (e)

The fourteen Bravais lattices are shown in Figure 3-6. As stated previously, a lattice is
infinite in extent, so a single unit cell is shown for each lattice. The unit cell is a subdi-
vision of a lattice that still retains the overall characteristics of the entire lattice. Lattice
points are located at the corners of the unit cells and, in some cases, at either the faces
or the center of the unit cell.

The fourteen Bravais lattices are grouped into seven crystal systems. The seven
crystal systems are known as cubic, tetragonal, orthorhombic, rhombohedral (also known
as trigonal), hexagonal, monoclinic, and triclinic. Note that for the cubic crystal system,
we have simple cubic (SC), face-centered cubic (FCC), and body-centered cubic (BCC)
Bravais lattices. These names describe the arrangement of lattice points in the unit cell.
Similarly, for the tetragonal crystal system, we have simple tetragonal and body-centered
tetragonal lattices. Again remember that the concept of a lattice is mathematical and does
not mention atoms, ions, or molecules. It is only when a basis is associated with a lattice
that we can describe a crystal structure. For example, if we take the face-centered cubic lat-
tice and position a basis of one atom on every lattice point, then the face-centered cubic
crystal structure is reproduced.

Note that although we have only fourteen Bravais lattices, we can have an infi-
nite number of bases. Hundreds of different crystal structures are observed in nature or
can be synthesized. Many different materials can have the same crystal structure. For
example, copper and nickel have the face-centered cubic crystal structure for which only
one atom is associated with each lattice point. In more complicated structures, particu-
larly polymer, ceramic, and biological materials, several atoms may be associated with
each lattice point (i.e., the basis is greater than one), forming very complex unit cells.
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Simple cubic Face-centered Body-centered
cubic cubic

Simple Body-centered Hexagonal
tetragonal tetragonal

Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic

Rhombohedral Simple Base-centered Triclinic
monoclinic monoclinic

Figure 3-6  The fourteen types of Bravais lattices grouped in seven crystal systems. The
actual unit cell for a hexagonal system is shown in Figures 3-8 and 3-13.

Unit Cell Our goal is to develop a notation to model crystalline solids that sim-
ply and completely conveys how the atoms are arranged in space. The unit cell concept
complements the lattice and basis model for representing a crystal structure. Although
the methodologies of the lattice and basis and unit cell concepts are somewhat different,
the end result—a description of a crystal—is the same.

Our goal in choosing a unit cell for a crystal structure is to find the single repeat
unit that, when duplicated and translated, reproduces the entire crystal structure. For exam-
ple, imagine the crystal as a three-dimensional puzzle for which each piece of the puzzle is
exactly the same. If we know what one puzzle piece looks like, we know what the entire puz-
zle looks like, and we don’t have to put the entire puzzle together to solve it. We just need
one piece! To understand the unit cell concept, we start with the crystal. Figure 3-7(a)
depicts a hypothetical two-dimensional crystal that consists of atoms all of the same type.

Next, we add a grid that mimics the symmetry of the arrangements of atoms.
There is an infinite number of possibilities for the grid, but by convention, we usually
choose the simplest. For the square array of atoms shown in Figure 3-7(a), we choose a
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Figure 3-7  The unit cell. (a) A two-dimensional crystal. (b) The crystal with an overlay of a
grid that reflects the symmetry of the crystal. (c) The repeat unit of the grid known as the unit
cell. Each unit cell has its own origin.

square grid as is shown in Figure 3-7(b). Next, we select the repeat unit of the grid, which
is also known as the unit cell. This is the unit that, when duplicated and translated by inte-
ger multiples of the axial lengths of the unit cell, recreates the entire crystal. The unit cell
is shown in Figure 3-7(c); note that for each unit cell, there is only one quarter of an atom
at each corner in two dimensions. We will always draw full circles to represent atoms, but
it is understood that only the fraction of the atom that is contained inside the unit cell
contributes to the total number of atoms per unit cell. Thus, there is 1/4 atom / corner =*
4 corners = 1 atom per unit cell, as shown in Figure 3-7(c). It is also important to note that,
if there is an atom at one corner of a unit cell, there must be an atom at every corner of the
unit cell in order to maintain the translational symmetry. Each unit cell has its own origin,
as shown in Figure 3-7(c).

Lattice Parameters and Interaxial Angles  The lattice
parameters are the axial lengths or dimensions of the unit cell and are denoted by conven-
tion as g, b, and c. The angles between the axial lengths, known as the interaxial angles,
are denoted by the Greek letters «, B, and . By convention, « is the angle between the
lengths b and ¢, B is the angle between @ and ¢, and 7y is the angle between a and b, as
shown in Figure 3-8. (Notice that for each combination, there is a letter a, b, and ¢ whether
it be written in Greek or Roman letters.)

In a cubic crystal system, only the length of one of the sides of the cube need be
specified (it is sometimes designated ag). The length is often given in nanometers (nm) or
angstrom (A) units, where

1 nanometer (nm) =107 m=10""cm = 10 A

1 angstrom (A)=0.1 nm =10"1"m =108 cm
The lattice parameters and interaxial angles for the unit cells of the seven crystal systems
are presented in Table 3-1.

To fully define a unit cell, the lattice parameters or ratios between the axial
lengths, interaxial angles, and atomic coordinates must be specified. In specifying
atomic coordinates, whole atoms are placed in the unit cell. The coordinates are
specified as fractions of the axial lengths. Thus, for the two-dimensional cell repre-
sented in Figure 3-7(c), the unit cell is fully specified by the following information:

Axial lengths: a = b
Interaxial angle: y = 90°
Atomic coordinate: (0, 0)
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Figure 3-8  Definition of the lattice parameters and their use in cubic, orthorhombic, and
hexagonal crystal systems.

Again, only 1/4 of the atom at each origin (0, 0) contributes to the number of atoms per
unit cell; however, each corner acts as an origin and contributes 1/4 atom per corner for
a total of one atom per unit cell. (Do you see why with an atom at (0, 0) of each unit cell
it would be repetitive to also give the coordinates of (1, 0), (0, 1), and (1, 1)?)

lowing information:

Similarly, a cubic unit cell with an atom at each corner is fully specified by the fol-

Axial lengths: a=b=c¢

Interaxial angles: « = B= y=90°
Atomic coordinate: (0, 0, 0)

TABLE 3-1 M Characteristics of the seven crystal systems

Structure Axes Angles between Axes Volume of the Unit Cell
Cubic a=b=c All angles equal 90°. a
Tetragonal a=b#c All angles equal 90°. a’c
Orthorhombic a# b#c Allangles equal 90°. abc
Hexagonal a=b#c Two angles equal 90°. 0.866a%c
The angle between
aand bequals 120°.
Rhombohedral a=b=c Al angles are equal &V1 — 3cos?a + 2c0s3a
or trigonal and none equals 90°.
Monoclinic a# b#c Twoangles equal 90°. abc sin B
One angle (B)
is not equal to 90°.
Triclinic a#b#c Alanglesare abcV/1 — cos?a — cos?B — cos?y + 2c0sacosBCosy

different and
none equals 90°.
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Now in three dimensions, each corner contributes 1/8 atom per each of the eight corners
for a total of one atom per unit cell. Note that the number of atomic coordinates required
is equal to the number of atoms per unit cell. For example, if there are two atoms per unit
cell, with one atom at the corners and one atom at the body-centered position, two atomic
coordinates are required: (0, 0, 0) and (1/2, 1/2, 1/2).

Number of Atoms per Unit Cell  Each unit cell contains a specific
number of lattice points. When counting the number of lattice points belonging to each
unit cell, we must recognize that, like atoms, lattice points may be shared by more than one
unit cell. A lattice point at a corner of one unit cell is shared by seven adjacent unit cells
(thus a total of eight cells); only one-eighth of each corner belongs to one particular cell.
Thus, the number of lattice points from all corner positions in one unit cell is

<1 /8 lattice point> (8 corners) _ 1lattice point

corner cell unit cell

Corners contribute 1/8 of a point, faces contribute 1/2, and body-centered positions con-
tribute a whole point [Figure 3-9(a)].

Face center atom
shared between

two unit cells /@ @

@
c 1-®
R I \@

Each corner atom is
shared by 8 unit cells
(1-4 in front, 5-8 in back)

Simple cubic Body-centered Face-centered
cubic cubic
(b)

Figure 3-9  (a) lllustration showing sharing of face and corner atoms. (b) The models for
simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) unit cells,
assuming only one atom per lattice point.
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The number of atoms per unit cell is the product of the number of atoms per lat-
tice point and the number of lattice points per unit cell. The structures of simple cubic
(SC), body-centered cubic (BCC), and face-centered cubic (FCC) unit cells (with one atom
located at each lattice point) are shown in Figure 3-9(b). Example 3-1 illustrates how to
determine the number of lattice points in cubic crystal systems.

Determining the Number of Lattice Points in Cubic
Crystal Systems

Determine the number of lattice points per cell in the cubic crystal systems. If there
is only one atom located at each lattice point, calculate the number of atoms per
unit cell.

SOLUTION

In the SC unit cell, lattice points are located only at the corners of the cube:

lattice points

= (8 corners)(l) =1

unit cell 8

In BCC unit cells, lattice points are located at the corners and the center of the cube:

lattice points

1
= — + - =
unit cell 8 corners)< 8> (1 body-center)(1) = 2

In FCC unit cells, lattice points are located at the corners and faces of the cube:

lattice points 1 1
———————— = (8 corners)| — | + (6 faces)| = ) = 4
unit cell 8 2

Since we are assuming there is only one atom located at each lattice point, the num-
ber of atoms per unit cell would be 1, 2, and 4, for the simple cubic, body-centered
cubic, and face-centered cubic unit cells, respectively.

m The Cesium Chloride Structure

Crystal structures usually are assigned names of a representative element or
compound that has that structure. Cesium chloride (CsCl) is an ionic, crystalline
compound. A unit cell of the CsCl crystal structure is shown in Figure 3-10.
Chlorine anions are located at the corners of the unit cell, and a cesium cation is
located at the body-centered position of each unit cell. Describe this structure as
a lattice and basis and also fully define the unit cell for cesium chloride.

SOLUTION

The unit cell is cubic; therefore, the lattice is either SC, FCC, or BCC. There are no
atoms located at the face-centered positions; therefore, the lattice is either SC or
BCC. Each Cl anion is surrounded by eight Cs cations at the body-centered positions
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Figure 3-10
The CsCl crystal structure. Note: lon sizes
not to scale.

® G

of the adjoining unit cells. Each Cs cation is surrounded by eight Cl anions at the
corners of the unit cell. Thus, the corner and body-centered positions do not have
identical surroundings; therefore, they both cannot be lattice points. The lattice must
be simple cubic.

The simple cubic lattice has lattice points only at the corners of the unit
cell. The cesium chloride crystal structure can be described as a simple cubic lat-
tice with a basis of two atoms, CI (0, 0, 0) and Cs (1/2, 1/2, 1/2). Note that the
atomic coordinates are listed as fractions of the axial lengths, which for a cubic
crystal structure are equal. The basis atom of CI (0, 0, 0) placed on every lattice
point (i.e., each corner of the unit cell) fully accounts for every Cl atom in the
structure. The basis atom of Cs (1/2, 1/2, 1/2), located at the body-centered
position with respect to each lattice point, fully accounts for every Cs atom in the
structure.

Thus there are two atoms per unit cell in CsCl:

1 lattice point . 2atoms  2atoms
unit cell lattice point  unit cell

To fully define a unit cell, the lattice parameters or ratios between the axial
lengths, interaxial angles, and atomic coordinates must be specified. The CsCl unit
cell is cubic; therefore,

Axial lengths: a=b=c¢
Interaxial angles: « = B = y=90°

The CI anions are located at the corners of the unit cell, and the Cs cations are
located at the body-centered positions. Thus,

Atomic coordinates: C1 (0, 0, 0) and Cs (1/2, 1/2, 1/2)

Counting atoms for the unit cell,

8 corners 1/8 Clatom 1 body-center . L Csatom _ 2atoms
unit cell corner unit cell body-center  unit cell

As expected, the number of atoms per unit cell is the same regardless of the method
used to count the atoms.
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Atomic Radius versus Lattice Parameter Directions in the
unit cell along which atoms are in continuous contact are close-packed directions. In sim-
ple structures, particularly those with only one atom per lattice point, we use these direc-
tions to calculate the relationship between the apparent size of the atom and the size of
the unit cell. By geometrically determining the length of the direction relative to the lat-
tice parameters, and then adding the number of atomic radii along this direction, we can
determine the desired relationship. Example 3-3 illustrates how the relationships between
lattice parameters and atomic radius are determined.

Determining the Relationship between Atomic Radius
and Lattice Parameters

Determine the relationship between the atomic radius and the lattice parameter in
SC, BCC, and FCC structures when one atom is located at each lattice point.

SOLUTION

If we refer to Figure 3-11, we find that atoms touch along the edge of the cube in
SC structures. The corner atoms are centered on the corners of the cube, so

ay="2r (3-1)

In BCC structures, atoms touch along the body diagonal, which is V34, in length.
There are two atomic radii from the center atom and one atomic radius from each
of the corner atoms on the body diagonal, so

4
V3
In FCC structures, atoms touch along the face diagonal of the cube, which is V24

in length. There are four atomic radii along this length—two radii from the face-
centered atom and one radius from each corner, so

ap = (3-2)

4r
ay = —= 3-3
0 \/E ( )
e—a—|
(SC) (BCO)
Figure 3-11  The relationships between the atomic radius and the lattice
parameter in cubic systems (for Example 3-3).
|
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The Hexagonal Lattice and Unit Cell The image of the hexag-
onal lattice in Figure 3-6 reflects the underlying symmetry of the lattice, but unlike the
other images in Figure 3-6, it does not represent the unit cell of the lattice. The hexago-
nal unit cell is shown in Figure 3-8. If you study the image of the hexagonal lattice in
Figure 3-6, you can find the hexagonal unit cell. The lattice parameters for the hexagonal
unit cell are

Axial lengths: a=5b # ¢
Interaxial angles: @ = 8=90°, y=120°

When the atoms of the unit cell are located only at the corners, the atomic coordinate
is (0, 0, 0).

Coordination Number The coordination number is the number of atoms
touching a particular atom, or the number of nearest neighbors for that particular atom.
This is one indication of how tightly and efficiently atoms are packed together. For ionic
solids, the coordination number of cations is defined as the number of nearest anions.
The coordination number of anions is the number of nearest cations. We will discuss the
crystal structures of different ionic solids and other materials in Section 3-7.

In cubic structures containing only one atom per lattice point, atoms have a
coordination number related to the lattice structure. By inspecting the unit cells in
Figure 3-12, we see that each atom in the SC structure has a coordination number of
six, while each atom in the BCC structure has eight nearest neighbors. In Section 3-5,
we will show that each atom in the FCC structure has a coordination number of twelve,
which is the maximum.

Packing Factor The packing factor or atomic packing fraction is the fraction
of space occupied by atoms, assuming that the atoms are hard spheres. The general expres-
sion for the packing factor is

( number of atoms/cell)( volume of each atom)

Packing factor = (3-4)

volume of unit cell

Example 3-4 illustrates how to calculate the packing factor for the FCC unit cell.

(@) (b)

Figure 3-12  Illustration of the coordination number in (a) SC and (b) BCC unit cells. Six
atoms touch each atom in SC, while eight atoms touch each atom in the BCC unit cell.
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SE1 < Ml Calculating the Packing Factor

Calculate the packing factor for the FCC unit cell.

SOLUTION

In the FCC unit cell, there are four lattice points per cell; if there is one atom per lat-
tice point, there are also four atoms per cell. The volume of one atom is 477°/3 and
the volume of the unit cell is ag, where r is the radius of the atom and «y is the lat-
tice parameter.

4
4 atoms/cell)<§ﬂ-r3)

Packing factor = 3
an

Since for FCC unit cells, ay = 4r/V?2
4
(4)<§m3>

Packing factor = = = (.74
£ @2} VIS

The packing factor of 7/V18 = 0.74 in the FCC unit cell is the most efficient pack-
ing possible. BCC cells have a packing factor of 0.68, and SC cells have a packing
factor of 0.52. Notice that the packing factor is independent of the radius of atoms,
as long as we assume that all atoms have a fixed radius. What this means is that it
does not matter whether we are packing atoms in unit cells or packing basketballs
or table tennis balls in a cubical box. The maximum achievable packing factor is
w/\V/18! This discrete geometry concept is known as Kepler’s conjecture. Johannes
Kepler proposed this conjecture in the year 1611, and it remained an unproven con-
jecture until 1998 when Thomas C. Hales actually proved this to be true.

The FCC arrangement represents a close-packed structure (CP) (i.e., the packing
fraction is the highest possible with atoms of one size). The SC and BCC structures are
relatively open. We will see in the next section that it is possible to have a hexagonal struc-
ture that has the same packing efficiency as the FCC structure. This structure is known
as the hexagonal close-packed structure (HCP). Metals with only metallic bonding are
packed as efficiently as possible. Metals with mixed bonding, such as iron, may have unit
cells with less than the maximum packing factor. No commonly encountered engineer-
ing metals or alloys have the SC structure, although this structure is found in ceramic
materials.

Density The theoretical density of a material can be calculated using the prop-
erties of the crystal structure. The general formula is
(number of atoms/cell)(atomic mass)

Density p = 2
ensity p (volume of unit cell)(Avogadro constant) )

If a material is ionic and consists of different types of atoms or ions, this for-
mula will have to be modified to reflect these differences. Example 3-5 illustrates how to
determine the density of BCC iron.
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m Determining the Density of BCC Iron

Determine the density of BCC iron, which has a lattice parameter of 0.2866 nm.

SOLUTION
For a BCC cell,
Atoms/cell =2
ay=0.2866 nm = 2.866 X 1078 cm
Atomic mass = 55.847 g/mol
Volume of unit cell = ay = (2.866 X 1078 cm)3 = 23.54 X 10724 cm?3/cell
Avogadro constant N 4 = 6.022 X 10?3 atoms/mol

(number of atoms/cell)(atomic mass of iron)

D t = .
ISP T (Volume of unit cell)(Avogadro constant)

B (2)(55.847)
(23.54 X 10724)(6.022 x 10%)

= 7.879 glem’

The measured density is 7.870 g/cm3. The slight discrepancy between the theoreti-
cal and measured densities is a consequence of defects in the material. As mentioned
before, the term “defect” in this context means imperfections with regard to the
atomic arrangement.

The Hexagonal Close-Packed Structure  The hexagonal
close-packed structure (HCP) is shown in Figure 3-13. The lattice is hexagonal with a
basis of two atoms of the same type: one located at (0, 0, 0) and one located at (2/3, 1/3,
1/2). (These coordinates are always fractions of the axial lengths a, b, and c even if the
axial lengths are not equal.) The hexagonal lattice has one lattice point per unit cell located
at the corners of the unit cell. In the HCP structure, two atoms are associated with every
lattice point; thus, there are two atoms per unit cell.

An equally valid representation of the HCP crystal structure is a hexagonal lat-
tice with a basis of two atoms of the same type: one located at (0, 0, 0) and one located at
(1/3,2/3,1/2). The (2/3,1/3, 1/2) and (1/3, 2/3, 1/2) coordinates are equivalent, mean-
ing that they cannot be distinguished from one another.

Volume = a(z)cO cos 30°

€o

ag
ap

120°
Figure 3-13  The hexagonal close-packed (HCP) structure (left) and its unit cell.
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TABLE 3-2 W Crystal structure characteristics of some metals at room temperature

Atoms  Coordination  Packing

Structure ag versus r per Cell Number Factor Examples
Simple cubic (SC) ap=2r 1 6 0.52 Polonium (Po), a-Mo
Body-centered cubic (BCC) ao= 4r/N3 2 8 0.68 Fe, W, Mo, Nb, Ta, K, Na, V, Cr
Face-centered cubic (FCC) ag=4r/V2 4 12 0.74 Cu, Au, Pt, Ag, Pb, Ni
Hexagonal close-packed (HCP)  ap=2r 2 12 0.74 Ti, Mg, Zn, Be, Co, Zr, Cd

Co =~ 1.63360

In metals with an ideal HCP structure, the ¢ and ¢ axes are related by the ratio
colag = V83 = 1.633. Most HCP metals, however, have ¢y/aq ratios that differ slightly
from the ideal value because of mixed bonding. Because the HCP structure, like the FCC
structure, has the most efficient packing factor of 0.74 and a coordination number of 12,
a number of metals possess this structure. Table 3-2 summarizes the characteristics of
crystal structures of some metals.

Structures of ionically bonded materials can be viewed as formed by the packing
(cubic or hexagonal) of anions. Cations enter into the interstitial sites or holes that remain
after the packing of anions. Section 3-7 discusses this in greater detail.

B
3-4 Allotropic or Polymorphic Transformations

Materials that can have more than one crystal structure are called allotropic or polymor-
phic. The term allotropy is normally reserved for this behavior in pure elements, while the
term polymorphism is used for compounds. We discussed the allotropes of carbon in
Chapter 2. Some metals, such as iron and titanium, have more than one crystal structure.
At room temperature, iron has the BCC structure, but at higher temperatures, iron trans-
forms to an FCC structure. These transformations result in changes in properties of mate-
rials and form the basis for the heat treatment of steels and many other alloys.

Many ceramic materials, such as silica (SiO,) and zirconia (ZrO,), also are poly-
morphic. A volume change may accompany the transformation during heating or cooling;
if not properly controlled, this volume change causes the brittle ceramic material to crack
and fail. For zirconia (ZrQ,), for instance, the stable form at room temperature (~25°C)
is monoclinic. As we increase the temperature, more symmetric crystal structures become
stable. At 1170°C, the monoclinic zirconia transforms into a tetragonal structure. The
tetragonal form is stable up to 2370°C. At that temperature, zirconia transforms into a
cubic form. The cubic form remains stable from 2370°C to a melting temperature of
2680°C. Zirconia also can have the orthorhombic form when high pressures are applied.

Ceramics components made from pure zirconia typically will fracture as the temper-
ature is lowered and as zirconia transforms from the tetragonal to monoclinic form because
of volume expansion (the cubic to tetragonal phase change does not cause much change in
volume). As a result, pure monoclinic or tetragonal polymorphs of zirconia are not used.
Instead, materials scientists and engineers have found that adding dopants such as yttria
(Y,03) make it possible to stabilize the cubic phase of zirconia, even at room temperature.
This yttria stabilized zirconia (YSZ) contains up to 8 mol.% Y,Oj3. Stabilized zirconia
formulations are used in many applications, including thermal barrier coatings (TBCs) for tur-
bine blades and electrolytes for oxygen sensors and solid oxide fuel cells. Virtually every car

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



www.mechassis.com
3-5 Points, Directions, and Planes in the Unit Cell 73

made today uses an oxygen sensor that is made using stabilized zirconia compositions.
Example 3-6 illustrates how to calculate volume changes in polymorphs of zirconia.

3'¢1) ]| CRZ M Calculating Volume Changes in Polymorphs of Zirconia

Calculate the percent volume change as zirconia transforms from a tetragonal to mon-
oclinic structure [9]. The lattice constants for the monoclinic unit cells are a = 5.156,
b=5.191, and ¢ = 5.304 A, respectively. The angle 3 for the monoclinic unit cell is 98.9°.
The lattice constants for the tetragonal unit cell are a = 5.094 and ¢ = 5.304 A. [10]
Does the zirconia expand or contract during this transformation? What is the implica-
tion of this transformation on the mechanical properties of zirconia ceramics?

SOLUTION
From Table 3-1, the volume of a tetragonal unit cell is given by
V=d2c = (5.094)%(5.304) = 137.63 A3
and the volume of a monoclinic unit cell is given by
V= abc sin B=(5.156)(5.191)(5.304) sin(98.9) = 140.25 A3

Thus, there is an expansion of the unit cell as ZrO, transforms from a tetragonal to
monoclinic form.

The percent change in volume = (final volume — initial volume)/
(initial volume) * 100 = (140.25 — 137.63 A3)/137.63 A3 % 100 = 1.9%

Most ceramics are very brittle and cannot withstand more than a 0.1% change in
volume. (We will discuss mechanical behavior of materials in Chapters 6, 7, and 8.) The
conclusion here is that ZrO, ceramics cannot be used in their monoclinic form since, when
zirconia does transform to the tetragonal form, it will most likely fracture. Therefore, ZrO,
is often stabilized in a cubic form using different additives such as CaO, MgO, and Y,Os.

B
3-5 Points, Directions, and Planes in the Unit Cell

Coordinates of Points  We can locate certain points, such as atom
positions, in the lattice or unit cell by constructing the right-handed coordinate system
in Figure 3-14. Distance is measured in terms of the number of lattice parameters we
must move in each of the x, y, and z coordinates to get from the origin to the point in
question. The coordinates are written as the three distances, with commas separating the
numbers.

Directions in the Unit Cell  cCertain directions in the unit cell are of par-
ticular importance. Miller indices for directions are the shorthand notation used to describe
these directions. The procedure for finding the Miller indices for directions is as follows:
1. Using a right-handed coordinate system, determine the coordinates of two points
that lie on the direction.
2. Subtract the coordinates of the “tail” point from the coordinates of the “head”
point to obtain the number of lattice parameters traveled in the direction of each
axis of the coordinate system.
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< Figure 3-14
0.0.1 Coordinates of selected points in the unit cell. The number
— refers to the distance from the origin in terms of lattice
1,1, 1 parameters.
0,0,0
1 >
5, 1,0
1,0,0 1,1,0

3. Clear fractions and/or reduce the results obtained from the subtraction to lowest
integers.

4. Enclose the numbers in square brackets [ ]. If a negative sign is produced, repre-
sent the negative sign with a bar over the number.

Example 3-7 illustrates a way of determining the Miller indices of directions.

m Determining Miller Indices of Directions

Determine the Miller indices of directions 4, B, and C in Figure 3-15.

SOLUTION

Direction 4

1. Two points are 1, 0, 0, and 0, 0, 0
2.1,0,0-0,0,0=1,0,0

3. No fractions to clear or integers to reduce
4. [100]

Direction B

1. Two pointsare 1, 1, 1 and 0, 0, 0
2. 1,1,1-0,0,0=1,1,1
3. No fractions to clear or integers to reduce

4. [111]
z Figure 3-15
0.0.1 Crystallographic directions and coordinates
— (for Example 3-7).
1,1,1
B R
A >y
0,0,0 % )
1,0,0
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Direction C

1. Two points are 0, 0, 1 and % 1,0
2.0,0,1 -3, 1,0=-5-1,1
3.2(-5.-1,1)=-1,-2,2

4. [122]

Several points should be noted about the use of Miller indices for directions:

1. Because directions are vectors, a direction and its negative are not identi-
cal; [100] is not equal to [100]. They represent the same line, but opposite
directions.

2. A direction and its multiple are identical; [100] is the same direction as [200].

3. Certain groups of directions are equivalent; they have their particular indices
because of the way we construct the coordinates. For example, in a cubic system,
a [100] direction is a [010] direction if we redefine the coordinate system as shown
in Figure 3-16. We may refer to groups of equivalent directions as directions of
a form or family. The special brackets () are used to indicate this collection of
directions. All of the directions of the form (110) are listed in Table 3-3.
We expect a material to have the same properties in each of these twelve direc-
tions of the form (110).

Significance of Crystallographic Directions  Crystallographic
directions are used to indicate a particular orientation of a single crystal or of an oriented
polycrystalline material. Knowing how to describe these can be useful in many applications.
Metals deform more easily, for example, in directions along which atoms are in closest con-
tact. Another real-world example is the dependence of the magnetic properties of iron and
other magnetic materials on the crystallographic directions. It is much easier to magnetize
iron in the [100] direction compared to the [111] or [110] directions. This is why the grains
in Fe-Si steels used in magnetic applications (e.g., transformer cores) are oriented in the [100]
or equivalent directions.

(100] [010]

x y
Figure 3-16  Equivalency of crystallographic directions of a form in cubic systems.
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TABLE 3-3 W Directions of the form (110) in cubic systems

[1101[110]
[1011[101]
[0111[011]
[1101[110]
(10111011
[01T1[011]

(110) =

Repeat Distance, Linear Density, and Packing Fraction
Another way of characterizing directions is by the repeat distance or the distance between
lattice points along the direction. For example, we could examine the [110] direction in an
FCC unit cell (Figure 3-17); if we start at the 0, 0, 0 location, the next lattice point is at the
center of a face, ora 1/2, 1/2, 0 site. The distance between lattice points is therefore one-half
of the face diagonal, or %\/an . In copper, which has a lattice parameter of 0.3615 nm, the
repeat distance is 0.2556 nm.

The linear density is the number of lattice points per unit length along the direc-
tion. In copper, there are two repeat distances along the [110] direction in each unit cell;
since this distance is V2ap = 0.5112 nm, then

2 repeat distances
0.5112 nm

Linear density = = 3.91 lattice points/nm

Note that the linear density is also the reciprocal of the repeat distance.

Finally, we can compute the packing fraction of a particular direction, or the frac-
tion actually covered by atoms. For copper, in which one atom is located at each lattice
point, this fraction is equal to the product of the linear density and twice the atomic radius.
For the [110] direction in FCC copper, the atomic radius r = V2ay/4 = 0.1278 nm.
Therefore, the packing fraction is

Packing fraction = ( linear density)(2r)
= (3.91)(2)(0.1278)
= (1.0)

23

Figure 3-17
Repeat distance = %\/an Determining the repeat distance, linear density,
and packing fraction for a [110] direction in FCC
copper.
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Atoms touch along the [110] direction, since the [110] direction is close-packed in FCC
metals.

Planes in the Unit Cell Certain planes of atoms in a crystal also carry
particular significance. For example, metals deform along planes of atoms that are most
tightly packed together. The surface energy of different faces of a crystal depends upon
the particular crystallographic planes. This becomes important in crystal growth. In thin
film growth of certain electronic materials (e.g., Si or GaAs), we need to be sure the sub-
strate is oriented in such a way that the thin film can grow on a particular crystallographic
plane.

Miller indices are used as a shorthand notation to identify these important planes,
as described in the following procedure.

1. Identify the points at which the plane intercepts the x, y, and z coordinates in
terms of the number of lattice parameters. If the plane passes through the ori-
gin, the origin of the coordinate system must be moved to that of an adjacent
unit cell.

2. Take reciprocals of these intercepts.
3. Clear fractions but do not reduce to lowest integers.

4. Enclose the resulting numbers in parentheses (). Again, negative numbers should
be written with a bar over the number.

The following example shows how Miller indices of planes can be obtained.

S EGCRcE: B Determining Miller Indices of Planes

Determine the Miller indices of planes 4, B, and C in Figure 3-18.

SOLUTION

Plane A
. x=1Ly=1z=1
1 1

2. - =1,-=1,
X y

=1

N | =

3. No fractions to clear
4. (111)

N

Figure 3-18
Crystallographic planes and intercepts (for
Example 3-8).
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Plane B
1. The plane never intercepts the z axis,sox =1, y=2,and z =
1 I 11
2. —=1,—-=-,—=0
X 'y 2z
. 1 1 1
3. Clear fractions: — =2,—=1,— =0
X y z
4. (210)
Plane C

1. We must move the origin, since the plane passes through 0, 0, 0. Let’s
move the origin one lattice parameter in the y-direction. Then, x =, y = —1,

and z = o,
2. l=0,l=—1,1=0
X y z

3. No fractions to clear.
4. (010)

Several important aspects of the Miller indices for planes should be noted:

1. Planes and their negatives are identical (this was not the case for directions)
because they are parallel. Therefore, (020) = (020).

2. Planes and their multiples are not identical (again, this is the opposite of what we
found for directions). We can show this by defining planar densities and planar
packing fractions. The planar density is the number of atoms per unit area
with centers that lie on the plane; the packing fraction is the fraction of the area
of that plane actually covered by these atoms. Example 3-9 shows how these can
be calculated.

3. In each unit cell, planes of a form or family represent groups of equivalent planes
that have their particular indices because of the orientation of the coordinates.
We represent these groups of similar planes with the notation {}. The planes of the
form {110} in cubic systems are shown in Table 3-4.

4. In cubic systems, a direction that has the same indices as a plane is perpendicular
to that plane.

TABLE 3-4 W Planes of the form {110} in cubic systems

(110)
(101)
(011)
(110)
(101)
(017)

{110}

Note: The negatives of the planes are not unique planes.
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S'C1] BB Calculating the Planar Density and Packing Fraction

Calculate the planar density and planar packing fraction for the (010) and (020)
planes in simple cubic polonium, which has a lattice parameter of 0.334 nm.

SOLUTION

The two planes are drawn in Figure 3-19. On the (010) plane, the atoms are centered
at each corner of the cube face, with 1/4 of each atom actually in the face of the unit
cell. Thus, the total atoms on each face is one. The planar density is

atoms per face 1 atom per face

Pl density (010) = =
anar density (010) area of face (0.334)?
= 8.96 atoms/nm?” = 8.96 X 10'* atoms/cm?>
(020) Figure 3-19

(010) (020)  The planar densities of the
(010) and (020) planes in SC
unit cells are not identical
(for Example 3-9).

The planar packing fraction is given by

. . area of atoms per face (1 atom)(7r?)
Packing fraction (010) = = 5
area of face (ag)

’7TI"2

T @y

No atoms are centered on the (020) planes. Therefore, the planar density and
the planar packing fraction are both zero. The (010) and (020) planes are not equivalent!

=0.79

Construction of Directions and Planes  To construct a direction
or plane in the unit cell, we simply work backwards. Example 3-10 shows how we might do this.

(S ETG] R By [Vl Drawing a Direction and Plane

Draw (a) the [121] direction and (b) the (210) plane in a cubic unit cell.

SOLUTION

a. Because we know that we will need to move in the negative y-direction, let’s locate
the origin at 0, +1, 0. The “tail” of the direction will be located at this new origin.
A second point on the direction can be determined by moving +1 in the x-direction,
—2 in the y-direction, and +1 in the z-direction [Figure 3-20(a)].

b. To draw in the (210) plane, first take reciprocals of the indices to obtain the inter-
cepts, that is
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Z Z
(a) A A
5 1 |
1’ T4y 1 I/ ;
I\ 1>
>y P >y
e
0,0,0 < 0,0,0
X X
(b) Z Z
A A 4\7
=
_— (210)
1 |
>y Y >y
X 0,0,0 X 0,0,0

Figure 3-20  Construction of a (a) direction and (b) plane within a unit cell (for Example 3-10).

Since the x-intercept is in a negative direction, and we wish to draw the
plane within the unit cell, let’s move the origin +1 in the x-direction to 1, 0, 0.

Then we can locate the x-intercept at —1/2 and the y-intercept at +1. The
plane will be parallel to the z-axis [Figure 3-20(b)].

Miller Indices for Hexagonal Unit Cells A special set of Miller-
Bravais indices has been devised for hexagonal unit cells because of the unique symmetry of
the system (Figure 3-21). The coordinate system uses four axes instead of three, with the a;
axis being redundant. The axes ay, a4, and a3 lie in a plane that is perpendicular to the fourth
axis. The procedure for finding the indices of planes is exactly the same as before, but four
intercepts are required, giving indices of the form (/1kil). Because of the redundancy of the
a3 axis and the special geometry of the system, the first three integers in the designation, cor-
responding to the @, a,, and a3 intercepts, are related by /1 + k = —i.

Directions in HCP cells are denoted with either the three-axis or four-axis system.
With the three-axis system, the procedure is the same as for conventional Miller indices;
examples of this procedure are shown in Example 3-11. A more complicated procedure,

c Figure 3-21
Miller-Bravais indices are obtained for crystallographic
/A planes in HCP unit cells by using a four-axis
coordinate system. The planes labeled A and B and
the directions labeled C and D are those discussed in
Example 3-11.

[2%] X

;az

a;
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c Figure 3-22
Typical directions in the HCP unit
cell, using both three- and four-axis
systems. The dashed lines show
__ that the [1210] direction is
[100] = [2110] equivalent to a [010] direction.

as
o _ +2 > a,
= N > \'
[110] =[1120]- v I
7 N — é
a [010] = [1210]

by which the direction is broken up into four vectors, is needed for the four-axis system.
We determine the number of lattice parameters we must move in each direction to get
from the “tail” to the “head” of the direction, while for consistency still making sure that
h + k=—i. This is illustrated in Figure 3-22, showing that the [010] direction is the same
as the [1210] direction.

We can also convert the three-axis notation to the four-axis notation for directions
by the following relationships, where /', k', and /" are the indices in the three-axis system:

1
h=<Qh =k
3 )
k= @k - i)
3 (3-6)
i = —% (' + k)
I=1 )

After conversion, the values of 7, k, i, and / may require clearing of fractions or
reducing to lowest integers.

Determine the Miller-Bravais indices for planes 4 and B and directions C and D in
Figure 3-21.

SOLUTION
Plane A

Determining the Miller-Bravais Indices for Planes
and Directions

1. a1=a2=a3=00,c=1
1 1 1

2' —_—= = — = 0’l = 1
ay %) as 4

3. No fractions to clear

4. (0001)
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Plane B

I. ay = 1,a2= 1,a3 = —E,Czl
1 1 1 1

2. —=1,—=1—=-2,—=1
aq ay as c

3. No fractions to clear.
4. (1121)
Direction C

1. Two points are 0, 0, 1 and 1, 0, 0.
2.0,0,1-1,0,0=-1,0,1

3. No fractions to clear or integers to reduce.
4. [101] or [2113]

Direction D

1. Two points are 0, 1, 0 and 1, 0, 0.
2.0,1,0-1,0,0=-1,1,0

3. No fractions to clear or integers to reduce.
4. [110] or [1100]

Close-Packed Planes and Directions In examining the rela-
tionship between atomic radius and lattice parameter, we looked for close-packed direc-
tions, where atoms are in continuous contact. We can now assign Miller indices to these
close-packed directions, as shown in Table 3-5.

We can also examine FCC and HCP unit cells more closely and discover that
there is at least one set of close-packed planes in each. Close-packed planes are shown
in Figure 3-23. Notice that a hexagonal arrangement of atoms is produced in two dimen-
sions. The close-packed planes are easy to find in the HCP unit cell; they are the (0001)
and (0002) planes of the HCP structure and are given the special name basal
planes. In fact, we can build up an HCP unit cell by stacking together close-packed planes
inan ... ABABAB . .. stacking sequence (Figure 3-23). Atoms on plane B, the (0002)
plane, fit into the valleys between atoms on plane A, the bottom (0001) plane. If another
plane identical in orientation to plane A is placed in the valleys of plane B directly above
plane A4, the HCP structure is created. Notice that all of the possible close-packed planes
are parallel to one another. Only the basal planes—(0001) and (0002)—are close-packed.

TABLE 3-5 W Close-packed planes and directions

Structure Directions Planes
SC (100) None
BCC (111) None
FcC (110) {111}
HCP (100), (110) or (1120) (0001), (0002)
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Figure 3-23
The ABABAB stacking sequence of close-
packed planes produces the HCP structure.

From Figure 3-23, we find the coordination number of the atoms in the HCP
structure. The center atom in a basal plane touches six other atoms in the same plane.
Three atoms in a lower plane and three atoms in an upper plane also touch the same atom.
The coordination number is twelve.

In the FCC structure, close-packed planes are of the form {111} (Figure 3-24).
When parallel (111) planes are stacked, atoms in plane B fit over valleys in plane 4 and
atoms in plane C fit over valleys in both planes 4 and B. The fourth plane fits directly over
atoms in plane 4. Consequently, a stacking sequence ... ABCABCABC . . .1is produced
using the (111) plane. Again, we find that each atom has a coordination number of twelve.

Unlike the HCP unit cell, there are four sets of nonparallel close-packed planes—
(111), (111), (111), and (111)—in the FCC cell. This difference between the FCC and HCP
unit cells—the presence or absence of intersecting close-packed planes—affects the
mechanical behavior of metals with these structures.

Isotropic and Anisotropic Behavior  Because of differences
in atomic arrangement in the planes and directions within a crystal, some properties
also vary with direction. A material is crystallographically anisotropic if its properties
depend on the crystallographic direction along which the property is measured. For
example, the modulus of elasticity of aluminum is 75.9 GPa (11 X 10 psi) in (111)
directions, but only 63.4 GPa (9.2 X 10° psi) in (100) directions. If the properties are

Figure 3-24

The ABCABCABC stacking
sequence of close-packed
planes produces the FCC
structure.
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identical in all directions, the material is crystallographically isotropic. Note that a
material such as aluminum, which is crystallographically anisotropic, may behave as an
isotropic material if it is in a polycrystalline form. This is because the random orien-
tations of different crystals in a polycrystalline material will mostly cancel out any
effect of the anisotropy as a result of crystal structure. In general, most polycrystalline
materials will exhibit isotropic properties. Materials that are single crystals or in which
many grains are oriented along certain directions (naturally or deliberately obtained by
processing) will typically have anisotropic mechanical, optical, magnetic, and dielectric
properties.

Interplanar Spacing The distance between two adjacent parallel planes
of atoms with the same Miller indices is called the interplanar spacing (dj;;). The interpla-
nar spacing in cubic materials is given by the general equation

o
At = ~————, (3-7)
Vi? + k? + 12
where aj is the lattice parameter and £, k, and / represent the Miller indices of the adja-
cent planes being considered. The interplanar spacings for non-cubic materials are given
by more complex expressions.

e
3-6 Interstitial Sites

In all crystal structures, there are small holes between the usual atoms into which smaller
atoms may be placed. These locations are called interstitial sites.

An atom, when placed into an interstitial site, touches two or more atoms in the
lattice. This interstitial atom has a coordination number equal to the number of atoms it
touches. Figure 3-25 shows interstitial locations in the SC, BCC, and FCC structures.
The cubic site, with a coordination number of eight, occurs in the SC structure at the
body-centered position. Octahedral sites give a coordination number of six (not eight).
They are known as octahedral sites because the atoms contacting the interstitial atom
form an octahedron. Tetrahedral sites give a coordination number of four. As an exam-
ple, the octahedral sites in BCC unit cells are located at the faces of the cube; a small atom
placed in the octahedral site touches the four atoms at the corners of the face, the atom
at the center of the unit cell, plus another atom at the center of the adjacent unit cell, giv-
ing a coordination number of six. In FCC unit cells, octahedral sites occur at the center
of each edge of the cube, as well as at the body center of the unit cell.

Octahedral

BCC FCC
Figure 3-25 The location of the interstitial sites in cubic unit cells. Only representative sites are shown.
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m Calculating Octahedral Sites

Calculate the number of octahedral sites that uniquely belong to one FCC unit cell.

SOLUTION

The octahedral sites include the twelve edges of the unit cell, with the coordinates

1 1 1
5,0,0 3,1,0 30,1
050 150 131

0,04 1,05 1,11

plus the center position, 1/2, 1/2, 1/2. Each of the sites on the edge of the unit cell
is shared between four unit cells, so only 1/4 of each site belongs uniquely to each

unit cell. Therefore, the number of sites belonging uniquely to each cell is

12 edges :l‘site 1 body-center 1 site

cell edge cell body-c

enter

= 4 octahedral sites/cell

85

Interstitial atoms or ions whose radii are slightly larger than the radius of the
interstitial site may enter that site, pushing the surrounding atoms slightly apart. Atoms
with radii smaller than the radius of the hole are not allowed to fit into the interstitial site
because the ion would “rattle” around in the site. If the interstitial atom becomes too
large, it prefers to enter a site having a larger coordination number (Table 3-6). Therefore,

TABLE 3-6 W The coordination number and the radius ratio

Coordination Number Location of Interstitial Radius Ratio Representation

2 Linear 0-0.155 (OO

3 Center of triangle 0.155-0.225 C%)

4 Center of tetrahedron 0.225-0.414 f O

\

(O—

6 Center of octahedron 0.414-0.732 :

8 Center of cube 0.732-1.000
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an atom with a radius ratio between 0.225 and 0.414 enters a tetrahedral site; if its radius
is somewhat larger than 0.414, it enters an octahedral site instead.

Many ionic crystals (see Section 3-7) can be viewed as being generated by close
packing of larger anions. Cations then can be viewed as smaller ions that fit into the inter-
stitial sites of the close-packed anions. Thus, the radius ratios described in Table 3-6 also
apply to the ratios of the radius of the cation to that of the anion. The packing in ionic
crystals is not as tight as that in FCC or HCP metals.

D
3-7 Crystal Structures of lonic Materials

Tonic materials must have crystal structures that ensure electrical neutrality, yet permit
ions of different sizes to be packed efficiently. As mentioned before, ionic crystal structures
can be viewed as close-packed structures of anions. Anions form tetrahedra or octahedra,
allowing the cations to fit into their appropriate interstitial sites. In some cases, it may be
easier to visualize coordination polyhedra of cations with anions going to the interstitial
sites. Recall from Chapter 2 that very often in real materials with engineering applications,
the bonding is never 100% ionic. We still use this description of the crystal structure,
though, to discuss the crystal structure of most ceramic materials. The following factors
need to be considered in order to understand crystal structures of ionically bonded solids.

lonic Radii The crystal structures of ionically bonded compounds often can be
described by placing the anions at the normal lattice points of a unit cell, with the cations
then located at one or more of the interstitial sites described in Section 3-6 (or vice versa).
The ratio of the sizes of the ionic radii of anions and cations influences both the manner of
packing and the coordination number (Table 3-6). Note that the radii of atoms and ions are
different. For example, the radius of an oxygen atom is 0.6 A; however, the radius of an
oxygen anion (O%") is 1.32 A. This is because an oxygen anion has acquired two additional
electrons and has become larger. As a general rule, anions are larger than cations. Cations,
having acquired a positive charge by losing electrons, are expected to be smaller. Strictly
speaking, the radii of cations and anions also depend upon the coordination number. For
example, the radius of an Al*3ionis 0.39 A when the coordination number is four (tetrahe-
dral coordination); however, the radius of Al is 0.53 A when the coordination number is
6 (octahedral coordination). Also, note that the coordination number for cations is the num-
ber of nearest anions and vice versa. The radius of an atom also depends on the coordina-
tion number. For example, the radius of an iron atom in the FCC and BCC polymorphs is
different! This tells us that atoms and ions are not “hard spheres” with fixed atomic radii.
Appendix B in this book contains the atomic and ionic radii for different elements.

Electrical Neutrality The overall material has to be electrically neutral.
If the charges on the anion and the cation are identical and the coordination number for
each ion is identical to ensure a proper balance of charge, then the compound will have a
formula A X (A: cation, X: anion). As an example, each cation may be surrounded by six
anions, while each anion is, in turn, surrounded by six cations. If the valence of the cation
is +2 and that of the anion is —1, then twice as many anions must be present, and the for-
mula is AX5. The structure of the 4 X, compound must ensure that the coordination num-
ber of the cation is twice the coordination number of the anion. For example, each cation
may have eight anion nearest neighbors, while only four cations touch each anion.
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Connection between Anion Polyhedra  Asarule, the coor-
dination polyhedra (formed by the close packing of anions) will share corners, as
opposed to faces or edges. This is because in corner sharing polyhedra, electrostatic
repulsion between cations is reduced considerably and this leads to the formation of a
more stable crystal structure. A number of common structures in ceramic materials are
described in the following discussions. Compared to metals, ceramic structures are more
complex. The lattice constants of ceramic materials tend to be larger than those for
metallic materials because electrostatic repulsion between ions prevents close packing of
both anions and cations.

m Radius Ratio for KCI

For potassium chloride (KCl), (a) verify that the compound has the cesium chloride
structure and (b) calculate the packing factor for the compound.

SOLUTION

a. From Appendix B, rg+ = 0.113 nm and r¢- = 0.181 nm, so

rgt _ 0.133 _
rer - 0.181 0.733

Since 0.732 < 0.735 < 1.000, the coordination number for each type of ion is eight,
and the CsCl structure is likely.
b. The ions touch along the body diagonal of the unit cell, so

\V3ay = 2rg+ + 2rc- = 2(0.133) + 2(0.181) = 0.628 nm

ay = 0.363 nm
) % mrg+ (1 Kion) + % m‘%;]— (1 Clion)
Packing factor = p
0

_ §m(0.133)° + 3(0.181)°
- (0.363) -

This structure is shown in Figure 3-10.

Sodium Chloride Structure  The radius ratio for sodium and chlo-
ride ions is rng+/ror- = 0.097 nm/0.181 nm = 0.536; the sodium ion has a charge of +1;
the chloride ion has a charge of —1. Therefore, based on the charge balance and radius
ratio, each anion and cation must have a coordination number of six. The FCC struc-
ture, with CI™! ions at FCC positions and Na™ at the four octahedral sites, satisfies these
requirements (Figure 3-26). We can also consider this structure to be FCC with two
ions—one Na™! and one ClI-!—associated with each lattice point. Many ceramics,
including magnesium oxide (MgO), calcium oxide (CaO), and iron oxide (FeO) have
this structure.
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Figure 3-26

The sodium chloride structure, a FCC unit
cell with two ions (Na* and CI7) per lattice
point. Note: ion sizes not to scale.

D ET < [ B Jllustrating a Crystal Structure and Calculating Density

Show that MgO has the sodium chloride crystal structure and calculate the density

of MgO.
SOLUTION
From Appendix B, rygt2 = 0.066 nm and ro-2 = 0.132 nm, so
'™Mg?  0.066
=——=10.50
ro2  0.132

Since 0.414 < 0.50 < 0.732, the coordination number for each ion is six, and the
sodium chloride structure is possible.

The atomic masses are 24.312 and 16.00 g/mol for magnesium and oxygen,
respectively. The ions touch along the edge of the cube, so

ay = 2ryg? + 2r02 = 2(0.066) + 2(0.132) = 0.396 nm = 3.96 X 1078 cm

~ (4Mg") (24.312) + (4 07?) (16.00)
(3.96 X 1078 ecm?)%(6.022 x 10%)

= 4.3] g/em?

Zinc Blende Structure Zinc blende is the name of the crystal struc-
ture adopted by ZnS. Although the Zn ions have a charge of +2 and S ions have a charge
of =2, zinc blende (ZnS) cannot have the sodium chloride structure because

'z

+2
ﬁ = 0.074 nm/0.184 nm = 0.402

This radius ratio demands a coordination number of four, which in turn means that the
zinc ions enter tetrahedral sites in a unit cell (Figure 3-27). The FCC structure, with S
anions at the normal lattice points and Zn cations at half of the tetrahedral sites, can
accommodate the restrictions of both charge balance and coordination number. A vari-
ety of materials, including the semiconductor GaAs and many other I11-V semiconduc-
tors (Chapter 2), have this structure.
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=
=

1
2
(@) (b)

Figure 3-27 (a) The zinc blende unit cell, (b) plan view. The fractions indicate the
positions of the atoms out of the page relative to the height of one unit cell.

m Calculating the Theoretical Density of GaAs

The lattice constant of gallium arsenide (GaAs) is 5.65 A. Show that the theoreti-
cal density of GaAs is 5.33 g/cm?.

SOLUTION

For the “zinc blende” GaAs unit cell, there are four Ga and four As atoms per unit cell.

From the periodic table (Chapter 2):

Each mole (6.022 X 1023 atoms) of Ga has a mass of 69.72 g. Therefore, the
mass of four Ga atoms will be 4 X 69.72 (6.022 X 10%%) g.

Each mole (6.022 X 1023 atoms) of As has a mass of 74.91 g. Therefore, the mass
of four As atoms will be 4 X 74.91 (6.022 X 10%%) g.

These atoms occupy a volume of (5.65 X 1078)3 cm3.

mass  4(69.72 + 74.91)/(6.022 x 10%)
volume (5.65 x 1075

density = = 5.33 g/em?

Therefore, the theoretical density of GaAs is 5.33 g/cm?.
|

Fluorite Structure The fluorite structure is FCC, with anions located at all
eight of the tetrahedral positions (Figure 3-28). Thus, there are four cations and eight anions
per cell, and the ceramic compound must have the formula 4X5, as in calcium fluorite, or
CaF,. In the designation AX>, A4 is the cation and X is the anion. The coordination number
of the calcium ions is eight, but that of the fluoride ions is four, therefore ensuring a balance
of charge. One of the polymorphs of ZrO, known as cubic zirconia exhibits this crystal struc-
ture. Other compounds that exhibit this structure include UO,, ThO,, and CeO,.

Corundum Structure Thisis one of the crystal structures of alumina known
as alpha alumina (a-Al,Os3). In alumina, the oxygen anions pack in a hexagonal arrangement,
and the aluminum cations occupy some of the available octahedral positions (Figure 3-29).
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Fluorite cell Plan view
(a) (b)

Figure 3-28  (a) Fluorite unit cell, (b) plan view. The fractions indicate the positions of the
atoms out of the page relative to the height of the unit cell.

Figure 3-29
Corundum structure of alpha-alumina
(a—/—\|203).

Alumina is probably the most widely used ceramic material. Applications include, but are not
limited to, spark plugs, refractories, electronic packaging substrates, and abrasives.

3 E1] IR W The Perovskite Crystal Structure

Perovskite is a mineral containing calcium, titanium, and oxygen. The unit cell is
cubic and has a calcium atom at each corner, an oxygen atom at each face center, and
a titanium atom at the body-centered position. The atoms contribute to the unit cell
in the usual way (1/8 atom contribution for each atom at the corners, etc.).

(a) Describe this structure as a lattice and a basis. (b) How many atoms of each type
are there per unit cell? (c) An alternate way of drawing the unit cell of perovskite
has calcium at the body-centered position of each cubic unit cell. What are the
positions of the titanium and oxygen atoms in this representation of the unit
cell? (d) By counting the number of atoms of each type per unit cell, show that
the formula for perovskite is the same for both unit cell representations.

SOLUTION

(a) The lattice must belong to the cubic crystal system. Since different types of atoms
are located at the corner, face-centered, and body-centered positions, the lattice
must be simple cubic. The structure can be described as a simple cubic lattice
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z Figure 3-30
The perovskite unit cell.

‘Ca
o
O o

with a basis of Ca (0, 0, 0), Ti (1/2,1/2,1/2), and O (0, 1/2, 1/2), (1/2, 0, 1/2),
and (1/2, 1/2, 0). The unit cell is shown in Figure 3-30.

(b) There are two methods for calculating the number of atoms per unit cell. Using
the lattice and basis concept,

1 lattice point . oatoms  5atoms
unit cell lattice point  unit cell

Using the unit cell concept,

8 corners | 1/8 Ca atom 1 body-center . 1 Tiatom
unit cell corner unit cell body-center

6 face—centers N 1/20 atom _ 5atoms

unit cell face-center  unit cell

As expected, the number of atoms per unit cell is the same regardless of which
method is used. The chemical formula for perovskite is CaTiO5 (calcium titanate).
Compounds with the general formula ABOj5 and this structure are said to have the
perovskite crystal structure. One of the polymorphs of barium titanate, which is
used to make capacitors for electronic applications, and one form of lead zirconate
exhibit this structure.

(c) If calcium is located at the body-centered position rather than the corners of the unit
cell, then titanium must be located at the corners of the unit cell, and the oxygen
atoms must be located at the edge centers of the unit cell, as shown in Figure 3-31.
Note that this is equivalent to shifting each atom in the basis given in part (a) by the

z Figure 3-31
An alternate representation of the unit
cell of perovskite.
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vector [1/2 1/2 1/2]. The Ca atom is shifted from (0, 0, 0) to (1/2, 1/2, 1/2), and the
Ti atom is shifted from (1/2, 1/2, 1/2) to (1, 1, 1), which is equivalent to the origin of
an adjacent unit cell or (0, 0, 0). Note that the crystal has not been changed; only the
coordinates of the atoms in the basis are different. Another lattice and basis descrip-
tion of perovskite is thus a simple cubic lattice with a basis of Ca (1/2, 1/2, 1/2), Ti
(0,0, 0),and O (1/2, 0, 0), (0, 1/2, 0), and (0, 0, 1/2).

Using the lattice and basis concept to count the number of atoms per unit cell,

1 lattice point . oatoms _ 5atoms
unit cell lattice point  unit cell

Using the unit cell concept,

1 body-center 1 Ca atom 8 corners _ 1/8 Ti atom
unit cell body-center unit cell corner

12 edge centers _ 1/4 O atom 5 atoms

unit cell edge-center ~ unit cell

Again we find that the chemical formula is CaTiOs;.

I
3-8 Covalent Structures

Covalently bonded materials frequently have complex structures in order to satisfy the
directional restraints imposed by the bonding.

Diamond Cubic Structure Elements such as silicon, germanium (Ge),
a-Sn, and carbon (in its diamond form) are bonded by four covalent bonds and produce
a tetrahedron [Figure 3-32(a)]. The coordination number for each silicon atom is only four
because of the nature of the covalent bonding.

Qc

(a) (b)

Figure 3-32  (a) Tetrahedron and (b) the diamond cubic (DC) unit cell. This open structure
is produced because of the requirements of covalent bonding.

Diamond
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As these tetrahedral groups are combined, a large cube can be constructed
[Figure 3-32(b)]. This large cube contains eight smaller cubes that are the size of the
tetrahedral cube; however, only four of the cubes contain tetrahedra. The large cube is
the diamond cubic (DC) unit cell. The atoms at the corners of the tetrahedral cubes pro-
vide atoms at the regular FCC lattice points. Four additional atoms are present within
the DC unit cell from the atoms at the center of the tetrahedral cubes. We can describe
the DC crystal structure as an FCC lattice with two atoms associated with each lattice
point (or a basis of 2). Therefore, there are eight atoms per unit cell.

S'E1 < WAl Determining the Packing Factor for the Diamond Cubic
Structure

Describe the diamond cubic structure as a lattice and a basis and determine its pack-
ing factor.

SOLUTION

The diamond cubic structure is a face-centered cubic lattice with a basis of two atoms
of the same type located at (0, 0, 0) and (1/4, 1/4, 1/4). The basis atom located at
(0, 0, 0) accounts for the atoms located at the FCC lattice points, which are (0, 0, 0),
0, 1/2,1/2),(1/2,0,1/2), and (1/2, 1/2, 0) in terms of the coordinates of the unit cell.
By adding the vector [1/4 1/4 1/4] to each of these points, the four additional atomic
coordinates in the interior of the unit cell are determined to be (1/4, 1/4, 1/4), (1/4,
3/4,3/4),(3/4,1/4,3/4), and (3/4, 3/4, 1/4). There are eight atoms per unit cell in the
diamond cubic structure:

4 lattice points . 2 atoms 8 atoms

unit cell lattice point  unit cell

The atoms located at the (1/4, 1/4, 1/4) type positions sit at the centers of
tetrahedra formed by atoms located at the FCC lattice points. The atoms at the (1/4,
1/4, 1/4) type positions are in direct contact with the four surrounding atoms.
Consider the distance between the center of the atom located at (0, 0, 0) and the cen-
ter of the atom located at (1/4, 1/4, 1/4). This distance is equal to one-quarter of the
body diagonal or two atomic radii, as shown in Figure 3-33. Thus,

CIO\/§
— =2r
4
Figure 3-33

Determining the relationship between the lattice
parameter and atomic radius in a diamond cubic
cell (for Example 3-17).
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or

8r
V3
The packing factor is the ratio of the volume of space occupied by the atoms in the
unit cell to the volume of the unit cell:

ay =

4
8 atoms/cell)(gwr3)
Packing factor = 3
ap
4 3
(8 atoms/cell) 5’777"
Packing factor =
& 8rV3)

Packing factor = 0.34

This is a relatively open structure compared to close-packed structures. In Chapter 5,
we will learn that the openness of a structure is one of the factors that affects the rate
at which different atoms can diffuse in a given material.

(S C1] R k- Calculating the Radius, Density, and Atomic
Mass of Silicon

The lattice constant of Si is 5.43 A. Calculate the radius of a silicon atom and the
theoretical density of silicon. The atomic mass of Si is 28.09 g/mol.

SOLUTION

Silicon has the diamond cubic structure. As shown in Example 3-17 for the diamond
cubic structure,

(l()\/§
8

Therefore, substituting a, = 5.43 A, the radius of the silicon atom = 1.176 A. This
is the same radius listed in Appendix B. For the density, we use the same approach
as in Example 3-15. Recognizing that there are eight Si atoms per unit cell, then

mass  8(28.09)/(6.022 X 10%%)
volume (5.43 x 1078 cm)’?

This is the same density value listed in Appendix A.

r=

density = = 2.33 g/em’®

Crystalline Silica In a number of its forms, silica (or SiO») has a crystalline
ceramic structure that is partly covalent and partly ionic. Figure 3-34 shows the crystal
structure of one of the forms of silica, B-cristobalite, which is a complicated structure
with an FCC lattice. The ionic radii of silicon and oxygen are 0.042 nm and 0.132 nm,
respectively, so the radius ratio is rgi+4/rg—2 = 0.318 and the coordination number is four.
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Figure 3-34

The silicon-oxygen tetrahedron and
the resultant B-cristobalite form

of silica.

b=4.94 A
c=255A

O Hydrogen
o Carbon

Figure 3-35  The unit cell of crystalline polyethylene (not to scale).

Crystalline Polymers A number of polymers may form a crystalline
structure. The dashed lines in Figure 3-35 outline the unit cell for the lattice of poly-
ethylene. Polyethylene is obtained by joining C,H, molecules to produce long polymer
chains that form an orthorhombic unit cell. Some polymers, including nylon, can have
several polymorphic forms. Most engineered plastics are partly amorphous and may
develop crystallinity during processing. It is also possible to grow single crystals of
polymers.

SETY R BB Calculating the Number of Carbon and Hydrogen
Atoms in Crystalline Polyethylene

How many carbon and hydrogen atoms are in each unit cell of crystalline polyeth-
ylene? There are twice as many hydrogen atoms as carbon atoms in the chain. The
density of polyethylene is about 0.9972 g/cm3.
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CHAPTER 3 Atomic and lonic Arrangements

SOLUTION

If we let x be the number of carbon atoms, then 2x is the number of hydrogen atoms.
From the lattice parameters shown in Figure 3-35:

(x)(12 g/mol) + (2x)(1 g/mol)

- (7.41 X 1078 cm)(4.94 X 1078 cm) (2.55 X 1078 cm)(6.022 X 10?)
14x
9972 = ——
09972 = ==

x = 4 carbon atoms per cell
2x = 8 hydrogen atoms per cell

Diffraction Techniques for Crystal Structure
Analysis

A crystal structure of a crystalline material can be analyzed using x-ray diffraction (XRD)
or electron diffraction. Max von Laue (1879—1960) won the Nobel Prize in 1914 for his dis-
covery related to the diffraction of x-rays by a crystal. William Henry Bragg (1862-1942)
and his son William Lawrence Bragg (1890-1971) won the 1915 Nobel Prize for their con-
tributions to XRD.

When a beam of x-rays having a single wavelength on the same order of magni-
tude as the atomic spacing in the material strikes that material, x-rays are scattered in all
directions. Most of the radiation scattered from one atom cancels out radiation scattered
from other atoms; however, x-rays that strike certain crystallographic planes at specific
angles are reinforced rather than annihilated. This phenomenon is called diffraction. The
x-rays are diffracted, or the beam is reinforced, when conditions satisfy Bragg’s law,

sinf = (3-8)

2dpig
where the angle 0 is half the angle between the diffracted beam and the original beam
direction, A is the wavelength of the x-rays, and dj,; is the interplanar spacing between
the planes that cause constructive reinforcement of the beam (see Figure 3-36).

When the material is prepared in the form of a fine powder, there are always at
least some powder particles (crystals or aggregates of crystals) with planes (/k/) oriented
at the proper 6 angle to satisfy Bragg’s law. Therefore, a diffracted beam, making an angle
of 26 with the incident beam, is produced. In a diffractometer, a moving x-ray detector
records the 26 angles at which the beam is diffracted, giving a characteristic diffraction pat-
tern (see Figure 3-37 on page 98). If we know the wavelength of the x-rays, we can deter-
mine the interplanar spacings and, eventually, the identity of the planes that cause the
diffraction. In an XRD instrument, x-rays are produced by bombarding a metal target
with a beam of high-energy electrons. Typically, x-rays emitted from copper have a wave-
length A = 1.54060 A (K-o line) and are used.

In the Laue method, which was the first diffraction method ever used, the speci-
men is in the form of a single crystal. A beam of “white radiation” consisting of x-rays
of different wavelengths is used. Each diffracted beam has a different wavelength.
In the transmission Laue method, photographic film is placed behind the crystal. In the



