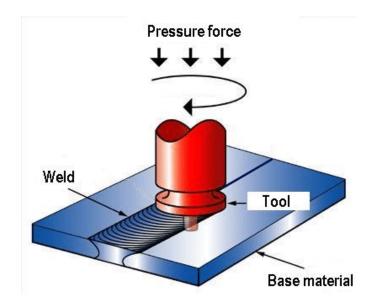

Friction Stir Processing (FSP)

Friction stir processing technology:

- is performed at temperatures below the melting temperature of base alloys.
- is relatively new and is based on the physical principles of friction stir welding (FSW)

• Advantages:


(1) FSP is a solid-state, one-stage processing technique that provides grain refinement, strengthening, and structural homogeneity without changing the shape and size of the processed metallic material;

(2) the microstructure and mechanical properties of the processed parts can be easily controlled by varying the process parameters;

(3) the method is both environmentally friendly and energy efficient. FSP has greatly evolved over recent decades and has found many practical and scientific applications.

Principles

- evolved from the friction stir welding technology and involves similar processes and principles
- the friction-heated and plasticized metal is subjected to severe plastic deformation by stirring, which results in obtaining a homogeneous recrystallized fine-grained microstructure.
- The tool rotates at a high rate and then is plunged into the workpiece under axial force until the tool shoulder contacts the workpiece surface.
- Friction between the tool and the workpiece produces a large amount of heat.

As the temperature rises due to frictional heat, the base metal softens in the processing zone and undergoes severe plastic deformation while being entrained by the rotating and traversing pin.

• This is the basic principle of modifying metallic materials by FSP, resulting in the formation of a subsurface gradient structure in the material via grain refinement and microstructural homogenization.

Process Parameters

- The main FSP parameters are the <u>tool rotation rate</u>, <u>traverse speed</u>, <u>tool tilt angle</u>, <u>pass time</u>, <u>tool geometry and size</u>, and <u>axial force</u> on the tool.
- The temperature in the processing zone: from 0.6 T_m to 0.9 T_m .
- FSP crush and dissolve agglomerates of reinforcing particles introduced into metal matrix composites.
- FSP allows healing the metal defects such as porosity, cracks, etc. and <u>modifies</u> <u>the alloy microstructure</u> by crushing large matrix grains, second phase particles, and dendrites in cast alloys.
- second phase or reinforcing particles are <u>homogenized or uniformly distributed</u> in the metal matrix.